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The mean spherical approximation (MSA) is of interest because it produces an integral equa-
tion that yields useful analytical results for a number of fluids. One such case is the Yukawa
fluid, which is a reasonable model for a simple fluid. The original MSA solution for this
fluid, due to Waisman, is analytic but not explicit. Ginoza has simplified this solution. How-
ever, Ginoza’s result is not quite explicit. Some years ago, Henderson, Blum, and Noworyta
obtained explicit results for the thermodynamic functions of a single-component Yukawa
fluid that have proven useful. They expanded Ginoza’s result in an inverse-temperature
expansion. Even when this expansion is truncated at fifth, or even lower, order, this expan-
sion is nearly as accurate as the full solution and provides insight into the form of the
higher-order coefficients in this expansion. In this paper Ginoza’s implicit result for the case
of a rather special mixture of Yukawa fluids is considered. Explicit results are obtained, again
using an inverse-temperature expansion. Numerical results are given for the coefficients in
this expansion. Some thoughts concerning the generalization of these results to a general
mixture of Yukawa fluids are presented.
Keywords: Fluid mixtures; Yukawa potential; Mean spherical approximation; Peturbation ex-
pansion; Thermodynamic functions.

Our understanding of single-component simple fluids is well developed.
Perturbation theory, which is an inverse-temperature expansion, has been
very useful. Second-order perturbation theory1–3 gives a good description of
the thermodynamic functions of such fluids. Additionally, the mean spher-
ical approximation4 (MSA) has proven to be very useful. The MSA is
particularily useful for fluids with a hard core. However, this is not a severe
restriction since the repulsive part of the intermolecular potential is quite
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steep and the difference between a hard and soft core is small and can be
treated using a temperature-dependent effective hard sphere diameter, as
suggested by Barker and Henderson2 (BH).

The zeroth- and first-order perturbation terms of a single-component
fluid can be obtained using results for a hard-sphere fluid. Even the second-
order perturbation term can be obtained with reasonable accuracy by
means of a compressibility approximation of BH 1. Second-order pertubation
theory gives good results for a pure fluid.

The solution of the MSA for a single-component Yukawa fluid, where the
interaction potential is given by

u R
R

R
z R

R( )
,

exp
( )

,=
∞ <

− − −





≥







σ
εσ σ

σ
σ (1)

where R is the separation of a molecular pair, σ is the molecular diameter, ε
gives the strength of the attractive interaction, and z is the decay parameter,
was obtained by Waisman5. The Yukawa fluid is a reasonable model for a
simple nonelectrolyte fluid. Waisman’s solution is implicit and involves six
simultaneous nonlinear equations in six unknowns. Waisman’s solution
has been simplified over the years. Ginoza6 has reported the most simple
result. However, his solution is still implicit. Henderson, Blum, and
Noworyta7 (HBN) have obtained explicit results by means of an inverse-
temperature expansion, similar to perturbation theory, that was taken to
fifth order. For the pure fluid, even an inverse-temperature expansion that
is truncated at second order gives good results. The zeroth- and first-order
terms in an inverse-temperature expansion obtained from the MSA are very
accurate. The second-order term in an inverse-temperature expansion as
given by the MSA term is approximate but agrees well with the BH simula-
tion results for this second-order term and with their compressibility ap-
proximation.

The situation is less satisfactory for a mixture. The zeroth- and first-order
perturbation terms can be determined from results for hard-sphere mix-
tures. However, little is known about the higher-order perturbation terms
of a mixture of simple fluids. The MSA has proven very useful, even for spe-
cialized mixtures. For example, the solution of the MSA has been obtained
for an electrolyte (a mixture of charged particles)8, even for the case where
the components have different diameters9. Additionally, Ginoza6 has used
the MSA to obtain implicit results for a simple nonelectrolyte fluid mixture
of molecules that interact via the Yukawa intermolecular potential
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where R is the separation of the centers of a pair of molecules, σij = (σi + σj)/2
and σi is the molecular diameter of a molecule of species i. The parameter εij
is the strength of the attractive interaction of an ij pair at contact. The pa-
rameter zij determines the range of the potential. There is probably little
need for this range or decay parameter to differ for different molecular
pairs. It is the counterpart of the index 6 in the Lennard–Jones (LJ) 12-6 po-
tential, which usually does not vary with molecular species. Thus, we may
safely assume that zij = z. The value z = 1.8 mimics10 a LJ 12-6 potential and
seems appropriate for most liquids.

Ginoza’s result was obtained for the case of a factorizable mixture, where
zij = z, σij = σ and

ε ε εij ii jj
LB = . (3)

Equation (3) is one of the well-known Lorentz–Berthelot mixing rules.
As is the case for the single-component fluid, Ginoza’s result is analytic

but implicit. It is worth examining the case of a mixture of Yukawa fluids in
order to obtain a useful theory of mixtures and finding explicit expressions
that yield results for a mixture and some understanding of higher-order
perturbation terms in an inverse-temperature series. Unfortunately, the re-
striction to equal-size molecules and Eq. (3) is a limitation. However, there
is reason to believe that a perturbational inverse-temperature expansion
may converge less well for a mixture of equal-size molecules than for a mix-
ture of unequal-size molecules or even a pure fluid because molecules of
different εii may be interchanged with no change in the repulsive energy.
Thus, knowledge of the higher-order terms may be especially valuable for
such an equal size mixture. Here, Ginoza’s result is considered and explicit
results using an inverse-temperature expansion are obtained. Approxima-
tions that may be useful for more general mixtures of simple fluids are con-
sidered.

EXPLICIT FORMULAE

We consider an m-component mixture of Yukawa fluids, all with the same
decay parameter, z, and of equal diameter, σ. The species differ only in the

Collect. Czech. Chem. Commun. 2008, Vol. 73, No. 3, pp. 424–438

426 Henderson, Scalise:



strength of the attractive interaction, εij, where Eq. (3) is satisfied. The con-
centration of species i is xi = Ni/N, where Ni is the number of particles of
species i and N = Σi Ni is the total number of molecules. Obviously, Σi xi = 1.
Define,

K xi ii
i

m

=
=
∑β ε

1

(4)

where β = 1/kT with k and T being the Boltzmann constant and tempera-
ture, respectively. Further, define the two average energies
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The superscript LB denotes that Eq. (3) has been used to compute the cross
interaction. In the case of a pure Yukawa fluid, ε ε ε= 〈 〉 =LB . For the pure
fluid, K = βε. Because of Eq. (3),
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Now, following Ginoza, define z Ki ii= βε / . This is more transparently
written as

zi
ii=
ε
ε

. (8)

Thus, we have the three equations
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and
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Equation (10) is the definition of z. Note that the zi and z are unrelated to
the decay parameter z in the Yukawa potential, which is always constant
and independent of concentration. Note that K z= 〈 〉β ε LB / 2 or z 2 = 〈 〉ε εLB / .
We have used the notation of Ginoza, rather than inventing a new nota-
tion.

Ginoza showed that
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where η = πρσ3/6 and ρ = N/V, where V is the volume that the fluid occupies.
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There is a misprint in Eq. (4) of the HBN paper7. Equation (12) is the correct
expression. All numerical results in the HBN paper are correct.
Φ0 is given by Eq. (7) of HBN and Φ1 is given by

Φ1 3

1 12
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Finally, ψ is given by

ψ =
Φ
Φ

1

0
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or
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The polynomials L(z) and S(z) are defined by Eqs (9) and (10) of the HBN
paper and are the Wertheim polynomials11. We note the misprint in Eq. (7)
of HBN 7. All numerical calculations in the HBN paper were performed with
the correct formulae. The above notation is that of HBN and essentially
that of Ginoza.

Equation (12) can be simplified to give
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Results could be obtained by numerical solution of Eq. (19) for Γ. Following
HBN, explicit results can be obtained by means of an expansion in powers
of K,
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We have obtained the Γn to fifth order. In displaying our results, it is con-
venient to define
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Our results for the Γn are
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and
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Now that Γ has been determined, we can turn to the thermodynamics.
The energy is obtained from
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where ∆E is the excess energy over that of the ideal gas mixture (3NkT/2)
and α0 and α1 are given by Eqs (18) and (19) of HBN 7. Equation (27) can be
simplified to
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It is convenient to define
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Expanding in powers of K yields
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The leading term E0 is, of course, zero since ∆E is the excess energy. The ex-
cess Helmholtz energy is obtained from
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for n > 0. Equation (38) results from the Carnahan–Starling expression for
the hard-sphere pressure. The entropy of mixing term must be included in
the ideal gas term.

The pressure and chemical potentials can be obtained by straightforward
differentiation of A. In particular, the pressure is given by

pV = η ∂
∂η
Α

. (40)

We note that φ0 and z 2 are independent of density. The derivatives of Φ0, φ,
α0, and α1 with respect to η are exactly the same as for the pure Yukawa
fluid. Further,
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We now give the derivatives of the Γ1 through Γ4.
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The expression for the derivative of Γ5 is even more lengthy and is not
given as it is not necessary to obtain p5.

The expression for p0 is obtained from Eq. (38) and is

p V
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The higher-order pn are
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and
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Thus, the pressure is given by

p K pn
n

n
n
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∑ .
0

(53)

The Gibbs’ energy is obtained from

G A pV= + . (54)
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We have checked all our expressions explicitly and using Mathematica.
Further, the derivatives were checked by comparison of results of a Fortran
program based on the explicit formulae with the Mathematica results. A
futher check was obtained by comparison, both analytically and numeri-
cally, of the results given here with those for the single-component fluid
obtained by HBN for the case where all εij are equal and for the case of a bi-
nary mixture with x1 = 0 and x2 = 0.

EXTENSION TO MORE GENERAL MIXTURES OF YUKAWA FLUIDS

The results thus far are based on Ginoza’s results for a factorizable mixture
and thus are rigorous consequences of the MSA if the particles are of equal
size and Eq. (3) is satisfied. However, Eq. (3) is not generally satisfied. One
possibility would be to write

E K En
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∑ε εx xi j ij
ij
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.
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(57)

Note that 〈 〉ε is equal to 〈 〉ε LB only if Eq. (3) is satisfied. In general, the two
quantities will differ.

From first-order perturbation theory we know that for a general mixture
of Yukawa fluids of equal size,
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This suggests the approximation

〈 〉 =E
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. (59)
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Equation (59) is a valid consequence of the MSA whether or not Eq. (3) is
satisfied. As long as Eq. (3) is satisfied, the change is only a formal change
of notation. However, Eqs (55)–(59) are applicable to solutions for which
Eq. (3) is not satisfied; they are no longer rigorous MSA results but a
nonrigorous, but hopefully useful, modification. We refer to Eqs (55)–(59)
as the modified MSA (M/MSA) equations.

For the Helmholtz energy,
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(60)

with A0 given by Eq. (38),
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for the higher order 〈 〉A n . Similarly,
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This leaves the question of a generalization to the case where the parti-
cles are of unequal size. Again the zeroth- and first-order terms can be
written explicitly using known results for the Percus–Yevick (PY) thermo-
dynamics and the Laplace transforms of the PY radial distribution functions
of a hard-sphere mixture12. As we have mentioned, we expect that the ex-
pansions in 1/T will converge more quickly for mixtures of particles of un-
equal size. If this is the case, the lower-order terms in 1/T should dominate
and the higher-order terms can be estimated using some average concen-
tration-dependent diameter. We leave such a procedure for future work and
concentrate here on the equal-size case, which is of less general interest for
practical calculations but is of possibly greater theoretical interest because
of the slower convergence of the 1/T series.
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RESULTS FOR A SIMPLE MIXTURE

As an application and illustration of these formulae, we report results for a
binary mixture (m = 2) of equal-size molecules for which ε11 = ε and ε12 =
ε22 = 0. This mixture is qualitatively representative of mixtures involving
helium, which has a comparatively small εHe,He. Results for more general
mixtures will be given in later publications.

The A1 for this mixture are shown in Fig. 1 for x2 = 0 and x1 = x2 = 0.5. In
Fig. 2 the higher-order An are displayed. The An are multiplied by xn

1 to
make them comparable in magnitude. It is seen that the inverse-
temperature expansion is rapidly convergent in case of a pure fluid (x1 = 1).
For the pure fluid, the high-order An are small at high densities because the
hard cores are close together and particle fluctuations are inhibited. Con-
vergence is not relevant for x2 = 1 because all the perturbation terms are
zero. On the other hand, for the mixture at x1 = 0.5, although A1, and to a
lesser extent A2 are the largest terms, the convergence is not rapid at
small T. This is a result of the fact that for equal-size molecules particles of
different attractive energy can be interchanged with no consequence in the
repulsive energies. This means that care must be used with the inverse-
temperature expansion for a mixture of equal-size molecules, at least in the
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FIG. 1
Coefficient A1 of a mixture of equal size Yukawa molecules for which ε12 = ε22 = 0 as a function
of the density, ρ* = ρσ3. The solid curve gives the values for x2 = 0, that is a pure fluid of mole-
cules of species 1 for which ε11 ≠ 0, and the dashed curve gives the values for x1 = x2 = 0.5. The
values of A1 are multiplied by x1 to give a better impression of its relative value. All quantities
are dimensionless



case considered here, for temperatures smaller than about ε11/k. The con-
vergence should be more rapid with mixtures of unequal-size molecules.

CONCLUSION

Expressions for the coefficients in an inverse-temperature expansion of the
Helmholtz energy and pressure are given for the case of mixtures of Yukawa
molecules of equal size. The convergence of this series is not rapid, at least
for the case considered here. Nonetheless, the results can be applied to mix-
tures of such gases. If lower temperature results are desired, one could solve
Eq. (19) numerically and use this result in Eq. (28) to obtain the energy.
This alternative procedure is less attractive because it is numerical but will
be investigated.

The authors are grateful for the friendship and counsel of Bill Smith that has extended over more
than forty years. On this occasion we wish him a feliz compleaños. O. H. Scalise is a member of the
Carrera del Investigador Científico, Comisión de Investigaciones Científicas de la Provincia de Buenos
Aires (CICPBA).
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FIG. 2
Coefficients An of a mixture of equal size Yukawa molecules for which ε12 = ε22 = 0 as a func-
tion of the density ρ* = ρσ3. The An are multiplied by xn

1 to give a better impression of their rel-
ative magnitudes. The numbers by the curves give the value of n. The solid and dashed curves
have the same meaning as in Fig. 1. All quantities are dimensionless
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